In this paper, the effects of thickness of AlN nucleation layer grown at high temperature on AlN epi-layer crystalline quality are investigated. Crack-ftee AlN samples with various nucleation thicknesses are grown on sapphire substrates by plasma-assisted molecular beam epitaxy. The AlN crystalline quality is analysed by transmission electron microscope and x-ray diffraction (XRD) rocking curves in both (002) and (102) planes. The surface profiles of nucleation layer with different thicknesses after in-situ annealing are also analysed by atomic force microscope. A critical nucleation thickness for realising high quality AlN films is found. When the nucleation thickness is above a certain value, the (102) XRD full width at half maximum (FWHM) of AlN bulk increases with nucleation thickness increasing, whereas the (002) XRD FWHM shows an opposite trend. These phenomena can be attributed to the characteristics of nucleation islands and the evolution of crystal grains during AlN main layer growth.
Blue InGaN multiple-quantum-well (MQW) samples with different InxGa1-xN (x=0.01–0.04) underneath layers (ULs) were grown by metal organic vapor phase epitaxy (MOVPE). Temperature dependent photoluminescence showed that the InGaN UL can improve the internal quantum efficiency (IQE) of MQW effectively due to strain release. And a maximum IQE of 50% was obtained when the thickness and In content of the InGaN UL were 60 nm and 0.01, respectively. Furthermore, the larger In content or thickness of the InGaN UL makes the IQE lower. Arrhenius fit to the experiment data showed that the IQE fall was mainly caused by the quantity increase of the nonradiative recombination centers, which was believed related to the accumulated stress in InGaN ULs.
WANG JiaXing, WANG Lai, ZHAO Wei, ZOU Xiang & LUO Yi National Laboratory for Information Science and Technology/State Key Laboratory on Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
SiNx is commonly used as a passivation material for AlGaN/GaN high electron mobility transistors (HEMTs). In this paper, the effects of SiNx passivation film on both two-dimensional electron gas characteristics and current collapse of A1GaN/GaN HEMTs are investigated. The SiNx films are deposited by high- and low-frequency plasma-enhanced chemical vapour deposition, and they display different strains on the AlGaN/GaN heterostructure, which can explain the experiment results.