Variance of parameter estimate in Cox’s proportional hazards model is based on asymptotic variance. When sample size is small, variance can be estimated by bootstrap method. However, if censoring rate in a survival data set is high, bootstrap method may fail to work properly. This is because bootstrap samples may be even more heavily censored due to repeated sampling of the censored observations. This paper proposes a random weighting method for variance estimation and confidence interval estimation for proportional hazards model. This method, unlike the bootstrap method, does not lead to more severe censoring than the original sample does. Its large sample properties are studied and the consistency and asymptotic normality are proved under mild conditions. Simulation studies show that the random weighting method is not as sensitive to heavy censoring as bootstrap method is and can produce good variance estimates or confidence intervals.
Single index models are widely used in medicine, econometrics and some other fields. In this paper, we consider the inference of a change point problem in single index models. Based on density-weighted average derivative estimation (ADE) method, we propose a statistic to test whether a change point exists or not. The null distribution of the test statistic is obtained using a permutation technique. The permuted statistic is rigorously shown to have the same distribution in the limiting sense under both null and alternative hypotheses. After the null hypothesis of no change point is rejected, an ADE-based estimate of the change point is proposed under assumption that the change point is unique. A simulation study confirms the theoretical results.
The multivariate extension of the Cox model proposed by Wei,Lin and Weissfeld in 1989 has been widely used for analyzing multivariate survival data.Under the model assumption,failure times from an individual are assumed to marginally follow their respective proportional hazards regression relation,leaving the joint distribution completely unspecified.This paper presents a simple approach to efficiency improvement through segmentation of stochastic integrals in the marginal estimating equations and incorporation of the limiting covariance structure.It is shown that when partition of the time interval is done at a suitable rate,the resulting estimator is consistent and asymptotically normal.Through the reproducing kernel Hilbert space arising from the covariance function of the limiting Gaussian process,it is also shown that the proposed estimator is asymptotically optimal within a reasonable class of estimators under marginal specification.Simulations are conducted to assess the finite-sample performance of the proposed method.