The Changbai Mountain Nature Reserve (CNR) was established in 1960 to protect the virgin Korean pine mixed hardwood forest, a typical temperate forest of northeast China. We conducted systematic stud- ies of vascular diversity patterns on the north slope of the CNR mountainside forests (800-1700 m a.s.l.) in 1963 and 2006 respectively. The aim of this comparison is to assess the long-term effects of the protection on plant biodiversity of CNR during the interval 43 years. The research was carried out in three types of forests: mixed coniferous and broad-leaved forest (MCBF), mixed coniferous forest (MCF), and sub-alpine coniferous forest (SCF), characterized by different dominant species. The alpha diversity indicted by species richness and the Shannon-Wiener index were found different in the same elevations and forest types during the 43-year interval. The floral composition and the diversity of vascular species were generally similar along altitudinal gradients before and after the 43-year interval, but some substantial changes were evident with the altitude gradient. In the tree layers, the dominant species in 2006 were similar to those of 1963, though diversity declined with altitude. The indices in the three forest types did not differ significantly between 1963 and 2006, and these values even increased in the MCBF and MCF from 1963 to 2006. However, originally dominant species, P. koraiensis for ex- ample, tended to decline, while the proportion of broad-leaved trees increased, and the species turn- over in the succession layers trended to shift to higher altitudes. The diversity pattern of the under canopy fluctuated along the altitudinal gradient due to micro-environmental variations. Comparison of the alpha diversity in the three forests shows that the diversity of the shrub and herb layer decreased with time. During the process of survey, we also found some rare and medicinal species disappeared. Analysis indicates that the changes of the diversity pattern in this region are caused by both nature and hu
BAI Fan1, SANG WeiGuo1, LI GuangQi1, LIU RuiGang1, CHEN LingZhi1 & WANG Kun2 1 State Key Laboratory of Vegetation and Environment Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
To study the seasonal variability of soil inorganic nitrogen (N) across borders at the woodland-farmland ecotone and potential mechanisms, contents of soil inorganic N were measured during the dry season (May 20 and June 30) and the rainy season (August 10 and September 20) of 2006 in the Songnen Plain of Northeast China. The borders between farmland and woodland were determined by a border-and-ecotone detection analysis (BEDA). The ecotone limits, often referred to as the depth-of-edge influence (DEI), are critical for determining the scale at which edge effect operates. The results showed that the soil inorganic N border between the woodland and farmland was located further toward the woodland interior during the rainy season (DEI -- 53.4 :k 8.7 m, August 10) than during the dry season (DEI = 35.0 =k 12.6 m, May 20). The seasonal variability in the soil inorganic N border was found to be associated with seasonal changes of deposition flux of N (the correlation coefficients between them for the dry season and rainy season were 0.61 and 0.67, respectively), which resulted from foliation patterns of trees and crops. Accordingly, the leaf area index at woodland edges was lower than that in the woodland interior, so woodland edges captured large amounts of atmosphere nitrogen deposition. The average DEI was 44.1 m, which was in accordance with the values of other temperate forest boundaries in literatures; therefore, BEDA was an appropriate method to estimate the borders of ecotones.