This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete multi-symplectic conservation law to solve the partial differential equations which are derived from the generalized fifth-order KdV equation numerically. The results of the numerical experiments show that this multi-symplectic algorithm is good in accuracy and its long-time numerical behaviour is also perfect.
In this paper,the complex multi-symplectic method and the implementation of the generalized sinhGordon equation are investigated in detail.The multi-symplectic formulations of the generalized sinh-Gordon equation in Hamiltonian space are presented firstly.The complex method is introduced and a complex semi-implicit scheme with several discrete conservation laws(including a multi-symplectic conservation law(CLS),a local energy conservation law(ECL) as well as a local momentum conservation law(MCL)) is constructed to solve the partial differential equations(PDEs) that are derived from the generalized sinh-Gordon equation numerically.The results of the numerical experiments show that the multi-symplectic scheme has excellent long-time numerical behavior and high accuracy.
The generalized Boussinesq equation that represents a group of important nonlinear equations possesses many interesting properties. Multi-symplectic formulations of the generalized Boussinesq equation in the Hamilton space are introduced in this paper. And then an implicit multi-symplectic scheme equivalent to the multi-symplectic Box scheme is constructed to solve the partial differential equations (PDEs) derived from the generalized Boussinesq equation. Finally, the numerical experiments on the soliton solutions of the generalized Boussinesq equation are reported. The results show that the multi-symplectic method is an efficient algorithm with excellent long-time numerical behaviors for nonlinear partial differential equations.
On the basis of the finite element analysis, the elastic wave propagation in cellular structures is investigated using the symplectic algorithm. The variation principle is first applied to obtain the dual variables and the wave propagation problem is then transformed into two-dimensional (2D) symplectic eigenvalue problems, where the extended Wittrick-Williams algorithm is used to ensure that no phase propagation eigenvalues are missed during computation. Three typical cellular structures, square, triangle and hexagon, are introduced to illustrate the unique feature of the symplectic algorithm in higher-frequency calculation, which is due to the conserved properties of the structure-preserving symplectic algorithm. On the basis of the dispersion relations and phase constant surface analysis, the band structure is shown to be insensitive to the material type at lower frequencies, however, much more related at higher frequencies. This paper also demonstrates how the boundary conditions adopted in the finite element modeling process and the structures' configurations affect the band structures. The hexagonal cells are demonstrated to be more efficient for sound insulation at higher frequencies, while the triangular cells are preferred at lower frequencies. No complete band gaps are observed for the square cells with fixed-end boundary conditions. The analysis of phase constant surfaces guides the design of 2D cellular structures where waves at certain frequencies do not propagate in specified directions. The findings from the present study will provide invaluable guidelines for the future application of cellular structures in sound insulation.
The wave propagation problem in the nonlinear periodic mass-spring structure chain is analyzed using the symplectic mathematical method. The energy method is used to construct the dynamic equation, and the nonlinear dynamic equation is linearized using the small parameter perturbation method. Eigen-solutions of the symplectic matrix are used to analyze the wave propagation problem in nonlinear periodic lattices. Nonlinearity in the mass-spring chain, arising from the nonlinear spring stiffness effect, has profound effects on the overall transmission of the chain. The wave propagation characteristics are altered due to nonlinearity, and related to the incident wave intensity, which is a genuine nonlinear effect not present in the corresponding linear model. Numerical results show how the increase of nonlinearity or incident wave amplitude leads to closing of transmitting gaps. Comparison with the normal recursive approach shows effectiveness and superiority of the symplectic method for the wave propagation problem in nonlinear periodic structures.
The mixed state of two-band II-superconductor is analyzed by the multi-symplectic method. As to the Ginzburg-Landau equation depending on time that describes the mixed state of two-band II-superconductor, the multi-symplectic formulations with several conservation laws: a multi-symplectic conservation law, an energy con- servation law, as well as a momentum conservation law, are presented firstly; then an eighteen points scheme is constructed to simulate the multi-symplectic partial differential equations (PDEs) that are derived from the Ginzburg-Landau equation; finally, based on the simulation results, the volt-ampere characteristic curves are obtained, as well as the relationships between the temperature and resistivity of a suppositional two-band II-superconductor model under different magnetic intensi- ties. From the results of the numerical experiments, it is concluded that the notable property of the mixed state of the two-band II-superconductor is that: The trans- formation temperature decreases and the resistivity ρ increases rapidly with the increase of the magnetic intensity B. In addition, the simulation results show that the multi-symplectic method has two remarkable advantages: high accuracy and excellent long-time numerical behavior.
HU WeiPeng1↑ & DENG ZiChen1,2 1 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China