A scheme for teleporting an unknown two-particle entangled state is proposed. In comparison with the recent protocol (Cola et al., Phys. Lett. A 337 (2005)), the entangled state as quantum channel required by this scheme is a single, partially entangled pair, which is much easier to prepare and maintain. Furthermore, a positive operator valued measure (POVM) is adopted and all kinds of transformations performed by sender and receiver are given in detail. It is shown that the probability of successful teleportation is twice the modulus square of the smaller Schmidt coefficient of the two-particle entangled state, and the fidelity can reach one.
Two multiparty simultaneous quantum identity authentication (MSQIA) protocols based on secret sharing are presented. All the users can be authenticated by a trusted third party (TTP) simultaneously. In the first protocol,the TTP shares a random key K with all the users using quantum secret sharing. The ith share acts as the authentication key of the ith user. When it is necessary to perform MSQIA,the TTP generates a random number R secretly and sends a sequence of single photons encoded with K and R to all the users. According to his share,each user performs the corresponding unitary operations on the single photon sequence sequentially. At last,the TTP can judge whether the impersonator exists. The sec-ond protocol is a modified version with a circular structure. The two protocols can be efficiently used for MSQIA in a network. They are feasible with current technol-ogy.
YANG YuGuang1,2,WEN QiaoYan3 & ZHANG Xing4,5 1 College of Computer Science and Technology,Beijing University of Technology,Beijing 100022,China